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Abstract: Multi-agent systems are increasingly popular approach to control of complex in-
dustrial processes. The idea of distribution of a complex task into many semi-autonomous
cooperating units has been formalized using many frameworks. In this paper, we review
the close relation of distributed Bayesian decision making and multi-agent systems. The
Bayesian methodology was primarily designed for systems with uncertainty. Therefore, a
distinctive feature of a Bayesian agent is that all information is represented by probabil-
ity density functions. Many algorithms derived for a single Bayesian decision maker are
suitable for use in multiagent scenarios, however, more work is required to resolve issues
related to Bayesian approach to communication and cooperation. The challenges for fu-
ture research will be outlined. It is concluded that the Bayesian paradigm provides a solid,
consistent framework for formalization of the task.
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1. INTRODUCTION

In recent years, it becomes obvious that the traditional centralized approach to control of large
systems has reached its limits. Decentralization of control and decision making is seen as future
direction of research in both academia (Haimes and Li, 1988) and industryei-dll 2005).

Many successful applications of so called holonic or multi-agent systems has been published.
This paradigm presents a new challenge for designers of these systems, since the traditional
methodologies of design became obsolete and no consistent replacement is availatde (Hall
al., 2005). One possible solution of this problem is to extend the existing methodologies to
accommodate the distributed setup.

In control applications, we can see an agent as an entity consisting of two principal parts:
(i) autonomous subsystemhich is responsible for agents ability to act according to its own
aims and needs, and (pmmunication and negotiation subsystaevhich is responsible for
exchanging its knowledge with other agents and adjustment of its aims in order to cooperate
and thus achieve better overall performance. The autonomous subsystem can be seen as a
controller in the traditional sense, hence a number of methodologies for its design is readily
available (Tamer, 2001). From this range of theories, we seek a methodology which is able to
embrace not only the autonomous but also the communication and negotiation subsystem. The
most promising candidate is the Bayesian theory of decision making, since (i) it is a consistent
theory for dealing with uncertainty which is ever present in real environments (Berger, 1985),
(i) the task of agent communication and negotiation can be formalized as decision making
problem, and (iii) it is successfully applied in controller design and in design of advanced
applications such as advising systems (Ké&ehgl., 2005).



Traditionally, the decision-maker is assumed to be the only entity that intentionally influences
the environment. It consists of a model of its environment, its individual aims, and a pre-
determined strategy of decision making. On the contrary, an agent in multi-agent systems is
known to influence only a part of the environment, i.e. niesghbourhoodwhile the rest of

the environment is modelled by other agents. In order to obtain relevant information from
distant parts of the environment, an agent relies on communication with other agents in its
neighbourhood. If the agents are able to exchange their aims and take them into account,
they can cooperate and improve the overall performance of the system. The challenge for
Bayesian decision making theory is to formalize communication and negotiation as operations
on probability distributions. It was shown that the techniquiithy probabilistic design (FPD)
(Kéarny, 1996) reduces the task of agent cooperationrgporting and merging of probability
density functiongAndryseket al,, 2004).

2. BAYESIAN DECISION MAKING

Bayesian decision making (DM) is based on the following principle (Berger, 19860m-

plete knowledge and randomness have the same operational consequences for decision mak-
ing. Therefore, all unknown quantities are treated as random variables and formulation of the
problem and its solution are firmly based within the framework of probability calculus.

This task of decision making can be decomposed into the following principal sub-tasks: (i)
model parametrization, (ii) learning of model parameters, and (iii) design of the control strat-
egy. These tasks will be now described in detail.

2.1 Model Parametrization

In this text,d; denotes all observable quantities on the environment, i.e. glai@nd actions,

ug, dy = [y}, u})". ©, is an unknown parameter of the model of the environment. In Bayesian
framework, theclosed loop—i.e. the environmerdandthe decision-maker—is described by the
following probability density function:

f(d(t), () =

1/ @lur,d(z=1),0;) f(Ocfur, d(7 = 1),0,1) f (urld (7 = 1)) (1)

T=1

Here, f () denotes probability density function (pdf) of its argumenh(t) denotes the obser-
vation historyd (t) = [dy,...,d;]. The model represents the whole trajectory of the system,
including inputsu which can be influenced by the decision-maker. The chosen order of condi-
tioning distinguishes the following important pdfs; (i) observation mofiéd, |u,, d(t — 1), ©,),

(i) internal model,f (©|u:, d(t — 1), 0;_1) , and (iii) DM strategy,f (u:|d (¢t — 1)). The first

two models are considered to be known, while the DM strategy is to be found.



2.2 Learning via Bayesian filtering

The task of learning is to infer posterior distribution of unknown parameters from the observed
data,f (©,|d (t)). This pdf can be computed recursively as follows:

f(Oru, d(t-1)) = /f(@t]ut,d(t —=1),6-1) [ (Opa|d(t = 1)) Oy, (2)
F©ld(t)) o f (ylu, d(t—1),0¢) f(Oluy, d (t —1)), 3)

In general, evaluation of the above pdfs is a complicated task, which is often intractable and
many approximate techniques must be used (Chen, 2003). In this text, we are concerned with
conceptual issues and we assume that all operatjorj {2)—(3) are tractable.

2.3 Design of DM strategy

In this Section, we revieviully probabilistic design (FPDpf the DM strategy (Karny, 1996).

This approach is an alternative to the standard stochastic control design, which is formu-
lated as minimization of an expected loss function with respect to decision making strategies
(Bertsekas, 2001). The FPD starts with specification of the decision making aim in the form
of ideal pdf of the closed loop. This ideal pdf—which is the key object of this approach—is
constructed in the same form @s (1) distinguished by superséript

f(d(),e)— Yfd),e). (4)

Similarly to (1), the ideal distribution is decomposed into ideal observation model, internal
model, and ideal DM strategy. The loss function of the decision making has the form of
Kullback-Leibler divergence between the model and the ideal. This has the following conse-
guences: (i) the loss function is very well interpretable and it can be simply tailored to practical
problems, and (ii) minimum of the KL divergence—i.e. the optimal DM strategy—is found in
closed form

3. BAYESIAN DECISION-MAKER

In practise, the task of adaptive decision making is typically solved in two stages (I€&rny

al., 2005): (i) off-line, and (ii) on-line. The off-line stage is dedicated to design of the structure
and fixed parameters (such as initial conditions) of the decision-maker. When the structure and
fixed parameters are determined, the decision-maker operates autonomously in on-line mode,
where it is able to adapt (by adjusting model parameters) to changes in the environment and
improve its DM-strategy. Operation needed in both stages are described in this Section.

3.1 Off-line stage

In this stage, it is necessary to determine structure of the mjodel (1) and prior distribution of
model parameters. If there is no physically justified model of the environment, the technique
of model selectiotest many possible parametrization of the model, and selects one, which is
best suited for the observed data. The techniquelioitation of prior distributions converts

the expert knowledge which is not available in the form of pdfs into probabilistic terms. When
the model and ideal distributions are chosen, the optimal DM strategy is computed using FPD

(Sectior ).



All these tasks are computationally demanding and thus they are traditionally solved off-line,
i.e. only once for all available data. This is acceptable, since all expert information is available
a priori, and model of the environment is assumed to be constant.

3.2 On-line stage

A typical adaptive decision-maker operates by recursive repetition of the following steps:

read: the observed data are read from the environment and pre-processed.
learn: the observed data are used to increase the knowledge about the environment.

adapt: the decision-maker use the improved knowledge of the system to improve its DM strat-
egy.

decide the adapted DM strategy is used to choose an appropriate action.
write : the chosen action is written into the environment.

Note that due to computational constraints, all operations in this stage are defined on finite
dimensional parameters or statistics.

3.3 Merging of pdfs

For the task of prior elicitation, we need to define a new probabilistic operation for merging of
information from many sources. The merging operation is defined as a mapping of two pdfs
into one:

F(Od (), f2(Od (£) === f(O]d (t)), (5)

where f; and f, are thesource pdfsand thef is themerged pdf Many approaches are avail-
able, e.g. (JirouSek, 2003), with different assumptions and properties. However, in the sequel,
we rely on the results of (Kracik, 2004) since these have the following properties: (i) defined as
optimization problems, with a reasonable loss function, (ii) their results are intuitively appeal-
ing and well interpretable, (iii) the optimum is reached for a class of pdfs which is uniquely
defined, (iv) is applicable to both discrete and continuous distributions, and (v) algorithmic
solutions are available.

We distinguish two kinds of merging: (i) direct, when the source and the merged pdfs are
defined on the same variables, and (ii) indirect, when the source distributions are defined on the
variable in condition of the merged pdf.

4. BAYESIAN AGENTS

The Bayesian agent is an extended Bayesian decision-maker described in previous Section.
The additional features are the ability and need of agents to communicate and cooperate. In
the Bayesian framework, all knowledge is stored in pdfs. The challenge is to formalize com-
munication and cooperation within the framework of probability calculus. In this Section, we
propose a simple probabilistic model of negotiation. For clarity of explanation, we consider
only two agentsAj;; andAjy, where agent number is always in subscript in square brackets.



Each agent has the following quantities:

Observed datad;: Naturally, each agent can observe different subset of variableg, j.eand
dy 2], for A; and A,, respectively.

Internal quantities ©,: We do not impose any structure of the environment model for the
agents, hence, internal quantitieg;;; and©, 5 are in general disjoint sets.

Environment Model: e.g. fi; = f (dy) (t), Oy (¢)) for agentAy;.
Ideal distributions: e.g. Ufjy; = Uf (dy (), ©p (t)) for agentdp).

Negotiation weights For the purpose of negotiation, we define a scalar quamiity < (0, 1)
denoting the level of belief of agenrt; in information received fromd,. Analogically,a |y is
defined inA,.

4.1 Communication

The agents can communicate two kinds of information: (i) about the environment, and (ii) about
their individual aims. The easiest way how to exchange the information about the environment

is to exchange the observed data. The observed data can be seen as a special case of pdf, namely
empirical pdff (d[g] (t)). Then, the task is formally identical with the task of indirect merging

of pdf, Sectior 33. The observed data fremare merged with the existing model 4f using

@). When the operation is finished, the merged fdfis then used as the new model of the
environment. The ideal distributions can be communicated and merged in the same way, using
direct merging, Sectign 3.3.

4.2 On-line algorithm of Bayesian agents

On-line operation of each Bayesian agent is an extension of the on-line steps of Bayesian
decision-maker (Sectidn 3).

read: the observed data are read from the system (environment). Possible communication (via
pdf) from the neighbour is also received in this step.

learn: the observed data are used to increase the knowledge about the system (environment).

merge if the communication from the neighbour contains information about the environment,
the merge operation is called in order to merge it with the current knowledge.

adapt: the decision-maker use the improved knowledge of the environment to improve its DM
strategy.

decide the adapted DM strategy is used to choose an appropriate action. In multi-agent sce-
nario, the tasks of communication and negotiation are also part of the decision making process
and are done in this step.

write : the chosen action is written into the system (environment). If the decision to communi-
cate was made, a message to the neighbour is also written in this step.

Note that acquisition of the observed data is synchronized with communication. In each time
step, only one message from the neighbour is received, processed and answered. This allows
seamless merging of knowledge from direct observations and from communication. If the



periods of data sampling and communication differ, the smaller one is chosen as the period of
one step of an agent.

5. CONCLUSION

We have presented a Bayesian framework for extension of decision-makers for cooperation and
cooperation. We have shown that this aim can be achieved using available theory and methods.
Detailed implementation of this approach and analysis of its properties are subject of ongoing
research.
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